6 research outputs found

    Delayed feedback makes neuronal firing statistics non-Markovian

    No full text
    The instantaneous state of a neural network consists of both the degree of excitation of each neuron and the positions of impulses in communication lines between the neurons. In neurophysiological experiments, the times of neuronal firing are recorded but not the state of communication lines. However, future spiking moments substantially depend on the past positions of impulses in the lines. This suggests that the sequence of intervals between firing moments (interspike intervals, ISI) in the network can be non-Markovian. In the present paper, we analyze this problem for the simplest possible neural “network,” namely, for a single neuron with delayed feedback.Стан нейронної мережi складається як з величини збудження в кожному з нейронiв, так i зi значень положення iмпульсiв у лiнiях зв’язку. В нейрофiзiологiчних експериментах реєструються моменти пострiлiв окремих нейронiв, а не стани лiнiй зв’язку. Але моменти наступних пострiлiв iстотним чином залежать вiд положення iмпульсiв у лiнiях зв’язку в попереднi моменти. Це наводить на думку, що послiдовнiсть iнтервалiв мiж послiдовними пострiлами окремого нейрона в мережi (мiжспайковi iнтервали, МСI) може складати немарковський точковий стохастичний процес. У цiй роботi дослiджується така можливiсть для найпростiшої з можливих нейронної „мережi”, а саме, поодинокого нейрона з затриманим зворотним зв’язком

    Firing statistics of inhibitory neuron with delayed feedback. I. Output ISI probability density

    Full text link
    Activity of inhibitory neuron with delayed feedback is considered in the framework of point stochastic processes. The neuron receives excitatory input impulses from a Poisson stream, and inhibitory impulses from the feedback line with a delay. We investigate here, how does the presence of inhibitory feedback affect the output firing statistics. Using binding neuron (BN) as a model, we derive analytically the exact expressions for the output interspike intervals (ISI) probability density, mean output ISI and coefficient of variation as functions of model's parameters for the case of threshold 2. Using the leaky integrate-and-fire (LIF) model, as well as the BN model with higher thresholds, these statistical quantities are found numerically. In contrast to the previously studied situation of no feedback, the ISI probability densities found here both for BN and LIF neuron become bimodal and have discontinuity of jump type. Nevertheless, the presence of inhibitory delayed feedback was not found to affect substantially the output ISI coefficient of variation. The ISI coefficient of variation found ranges between 0.5 and 1. It is concluded that introduction of delayed inhibitory feedback can radically change neuronal output firing statistics. This statistics is as well distinct from what was found previously (Vidybida & Kravchuk, 2009) by a similar method for excitatory neuron with delayed feedback.Comment: 23 pages, 8 figure

    Soliton ratchets induced by ac forces with harmonic mixing

    Get PDF
    The ratchet dynamics of a kink (topological soliton) of a dissipative sine-Gordon equation in the presence of ac forces with harmonic mixing (at least bi-harmonic) of zero mean is studied. The dependence of the kink mean velocity on system parameters is investigated numerically and the results are compared with a perturbation analysis based on a point particle representation of the soliton. We find that first order perturbative calculations lead to incomplete descriptions, due to the important role played by the soliton-phonon interaction in establishing the phenomenon. The role played by the temporal symmetry of the system in establishing soliton ratchets is also emphasized. In particular, we show the existence of an asymmetric internal mode on the kink profile which couples to the kink translational mode through the damping in the system. Effective soliton transport is achieved when the internal mode and the external force get phase locked. We find that for kinks driven by bi-harmonic drivers consisting of the superposition of a fundamental driver with its first odd harmonic, the transport arises only due to this {\it internal mode} mechanism, while for bi-harmonic drivers with even harmonic superposition, also a point-particle contribution to the drift velocity is present. The phenomenon is robust enough to survive the presence of thermal noise in the system and can lead to several interesting physical applications.Comment: 9 pages, 13 figure
    corecore